Consolidation of Grade 6 EQAO Questions

Number Sense and Numeration

Compiled by Devika William-Yu (SE2 Math Coach)
GRADE SIX EQAO QUESTIONS: Number Sense and Numeration

Overall Expectations

NV1	• Read, represent, compare, and order whole numbers to 1,000,000, decimal numbers to thousandths, proper and improper fractions, and mixed numbers
NV2	• Solve problems involving the multiplication and division of whole numbers, and the addition and subtraction of decimal numbers to thousandths, using a variety of strategies
NV3	• Demonstrate an understanding of relationships involving percent, ratio, and unit rate

<table>
<thead>
<tr>
<th>Year</th>
<th>NV1</th>
<th>NV2</th>
<th>NV3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring 2006</td>
<td>MC17, MC19</td>
<td>MC4, MC5, MC25, OR29</td>
<td>MC20, OR8</td>
</tr>
<tr>
<td>Spring 2007</td>
<td>MC18, MC19, OR29</td>
<td>MC5, MC34</td>
<td>MC6, MC35, OR8</td>
</tr>
<tr>
<td>Spring 2008</td>
<td>MC1, MC2, OR10</td>
<td>MC31, MC32</td>
<td>MC22, MC23, OR27</td>
</tr>
<tr>
<td>Spring 2009</td>
<td>MC1, MC33, OR29</td>
<td>MC2, MC31, MC32, OR28</td>
<td>MC22</td>
</tr>
<tr>
<td>Spring 2010</td>
<td>MC1, MC32, OR8</td>
<td>MC5, MC23</td>
<td>MC31, MC34, OR28</td>
</tr>
<tr>
<td>Spring 2011</td>
<td>MC17, MC20, OR8</td>
<td>MC5, MC33, MC36, OR7</td>
<td>MC35</td>
</tr>
<tr>
<td>Year</td>
<td>Knowledge & Understanding</td>
<td>Problem Solving (Thinking)</td>
<td>Application</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------</td>
<td>----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Spring 2009</td>
<td>MC1, MC32</td>
<td>MC22, MC23, OR28, OR29</td>
<td>MC2, MC31</td>
</tr>
<tr>
<td>Spring 2010</td>
<td>MC1, MC23</td>
<td>MC32, MC34, OR28</td>
<td>MC5, MC31, OR8</td>
</tr>
<tr>
<td>Spring 2011</td>
<td>MC17, MC35</td>
<td>MC5, MC20, OR7</td>
<td>MC33, MC36, OR8</td>
</tr>
</tbody>
</table>
Continuum of Expectations: Number Sense & Numeration

Quantity Relationships

<table>
<thead>
<tr>
<th>Grade 5</th>
<th>Grade 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Expectation</td>
<td>Specific Expectations</td>
</tr>
<tr>
<td>• Read, represent, compare, and order whole numbers to 100 000, decimal numbers to hundredths, proper and improper fractions, and mixed numbers</td>
<td>• Read, represent, compare, and order whole numbers to 1 000 000, decimal numbers to thousandths, proper and improper fractions, and mixed numbers</td>
</tr>
</tbody>
</table>

Grade 5

- **Represent, compare, and order whole numbers and decimal numbers from 0.01 to 100 000, using a variety of tools**
- **Demonstrate an understanding of place value in whole numbers and decimal numbers from 0.01 to 100 000, using a variety of tools and strategies**
- **Solve problems that arise from real-life situations and that relate to the magnitude of whole numbers up to 100 000**
- **Read and print in words whole numbers to ten thousand, using meaningful contexts**
- **Represent, compare, and order fractional amounts with like denominators, including proper and improper fractions and mixed numbers, using a variety of tools**
- **Demonstrate and explain the concept of equivalent fractions, using concrete materials**
- **Round decimal numbers to the nearest tenth, in problems arising from real-life situations**
- **Demonstrate and explain equivalent representations of a decimal number, using concrete materials and drawings**
- **Read and write money amounts to $1000**

Grade 6

- **Represent, compare, and order whole numbers and decimal numbers from 0.001 to 1 000 000, using a variety of tools and strategies**
- **Demonstrate an understanding of place value in whole numbers and decimal numbers from 0.001 to 1 000 000, using a variety of tools and strategies**
- **Solve problems that arise from real-life situations and that relate to the magnitude of whole numbers up to 1 000 000**
- **Read and print in words whole numbers to one hundred thousand, using meaningful contexts**
- **Represent, compare, and order fractional amounts with unlike denominators, including proper and improper fractions and mixed numbers, using a variety of tools**
- **Demonstrate and explain equivalent representations of a decimal number, using concrete materials and drawings**
- **Read and write money amounts to $1000**
- **Estimate quantities using benchmarks of 10%, 25%, 50%, 75%, and 100%**
- **Identify composite numbers and prime numbers, and explain the relationship between them (i.e., any composite number can be factored into prime factors)**
Counting

<table>
<thead>
<tr>
<th>Overall Expectation</th>
<th>Grade 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrate an understanding of magnitude by counting forward and backwards by 0.01</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific Expectations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Count forward by hundredths from any decimal number expressed to two decimal places, using concrete materials and number lines</td>
<td></td>
</tr>
<tr>
<td>Operational Sense</td>
<td>Grade 5</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Overall Expectation</td>
<td>• Solve problems involving the multiplication and division of multi-digit whole numbers, and involving the addition and subtraction of decimal numbers to hundredths, using a variety of strategies</td>
</tr>
<tr>
<td>Specific Expectations</td>
<td>• Solve problems involving the addition, subtraction, and multiplication of whole numbers, using a variety of mental strategies</td>
</tr>
<tr>
<td></td>
<td>• Multiply two-digit whole numbers by two-digit whole numbers, using estimation, student-generated algorithms, and standard algorithms</td>
</tr>
<tr>
<td></td>
<td>• Divide three-digit whole numbers by one-digit whole numbers, using concrete materials, estimation, student-generated algorithms, and standard algorithms</td>
</tr>
<tr>
<td></td>
<td>• Use estimation when solving problems involving the addition, subtraction, multiplication, and division of whole numbers, to help judge the reasonableness of a solution</td>
</tr>
<tr>
<td></td>
<td>• Add and subtract decimal numbers to hundredths, including money amounts, using concrete materials, estimation, and algorithms</td>
</tr>
<tr>
<td></td>
<td>• Multiply decimal numbers by 10, 100, 1000, and 10 000, and divide decimal numbers by 10 and 100, using mental strategies</td>
</tr>
<tr>
<td></td>
<td>• Explain the need for a standard order for performing operations, by investigating the impact that changing the order has when performing a series of operations</td>
</tr>
</tbody>
</table>
Proportional Relationships

<table>
<thead>
<tr>
<th>Grade 5</th>
<th>Grade 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Expectation</td>
<td>Demonstrate an understanding of relationships involving percent, ratio, and unit rate</td>
</tr>
<tr>
<td>Specific Expectations</td>
<td>Specific Expectations</td>
</tr>
<tr>
<td>• Demonstrate an understanding of proportional reasoning by investigating whole-number rates</td>
<td>• Demonstrate an understanding of relationships involving percent, ratio, and unit rate</td>
</tr>
<tr>
<td>• Describe multiplicative relationships between quantities by using simple fractions and decimals</td>
<td>• Determine and explain, through investigation using concrete materials, drawings, and calculators, the relationships among fractions (i.e., with denominators of 2, 4, 5, 10, 20, 25, 50, and 100), decimal numbers, and percents</td>
</tr>
<tr>
<td>• Determine and explain, through investigation using concrete materials, drawings, and calculators, the relationship between fractions (i.e., with denominators of 2, 4, 5, 10, 20, 25, 50, and 100) and their equivalent decimal forms</td>
<td>• Represent relationships using unit rates</td>
</tr>
<tr>
<td>• Demonstrate an understanding of simple multiplicative relationships involving whole-number rates, through investigation using concrete materials and drawings</td>
<td>• Represent ratios found in real-life contexts, using concrete materials, drawings, and standard fractional notation</td>
</tr>
</tbody>
</table>
Which of the following is a factor of 70 but is not a prime number?

a 10 *
b 7
c 4
d 2

Which set is in order from least to greatest?

a 1.153, 1.062, 0.13, 0.054
b 0.13, 0.054, 1.162, 1.153
c 0.054, 0.13, 1.153, 1.062
d 0.054, 0.13, 1.062, 1.153 *
What number is modelled in the place-value chart below?

Thousands	Hundreds	Tens	Ones	Tenths	Hundredths	Thousandths
F 3529.035
G 3529.35
H 3511.035
J 35 011.35
A school has 500 students. The shaded portion below shows the students with perfect attendance.

Perfect Attendance

```
0% 10% 25% 50% 75% 100%
```

Which of the following is closest to the number of students with perfect attendance?

A 100
B 200
C 300
D 400
Write the following fractions in order from least to greatest.

\[
\frac{3}{2}, \frac{2}{3}, \frac{1}{4}, \frac{4}{5}
\]

Explain your thinking.
1. Which is the correct way to write the number 90,090 in words?
 a. nine hundred ninety
 b. nine thousand ninety
 c. ninety thousand ninety
 d. nine hundred thousand ninety

2. Joseph finishes a swim race in 73.365 seconds. Joseph knows the following about his friend’s time for the same race.
 • The digit in the hundredths column is 3 more than Joseph’s.
 • The digit in the ones column is 2 less than Joseph’s.

 In what time does Joseph’s friend swim the race?
 a. 53.368
 b. 53.395
 c. 71.368
 d. 71.395
Each of 130 students sign up for one of five activities. The table below shows some of the results.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soccer</td>
<td>38</td>
</tr>
<tr>
<td>Chess</td>
<td>13</td>
</tr>
<tr>
<td>Band</td>
<td>33</td>
</tr>
<tr>
<td>Drama</td>
<td></td>
</tr>
<tr>
<td>Photography</td>
<td>14</td>
</tr>
</tbody>
</table>

Susan estimates that 25% of the students signed up for drama. Jessica estimates that 50% of the students signed up for drama.

Using the benchmarks of 10%, 25%, 50%, 75% or 100%, justify which estimate is more appropriate.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Which of the following lists shows these numbers in order from least to greatest?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1.250, 12.50, 0.125, 125.0</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>0.125, 12.50, 1.250, 125.0</td>
</tr>
<tr>
<td>b</td>
<td>125.0, 12.50, 1.250, 0.125</td>
</tr>
<tr>
<td>c</td>
<td>12.50, 125.0, 0.125, 1.250</td>
</tr>
<tr>
<td>d</td>
<td>0.125, 1.250, 12.50, 125.0</td>
</tr>
</tbody>
</table>
Which of the following best approximates the area of the entire spill?

a. 100 cm²
b. 300 cm²
c. 400 cm²
d. 600 cm²
Consider the fractions $\frac{3}{2}$ and $1 \frac{3}{4}$.

- Which of these fractions is larger?

Justify your answer.

The larger fraction is ________________.

Find a fraction between $\frac{3}{2}$ and $1 \frac{3}{4}$.

Justify your answer.

A fraction between $\frac{3}{2}$ and $1 \frac{3}{4}$ is ________________.
GRADE SIX EQAO QUESTIONS: Number Sense and Numeration
Overall Expectation #1
Spring 2010

1. Zach lives in a city with a population of ninety-two thousand forty-seven. Which number below represents the population of this city?
 a. 9247
 b. 92 470
 c. 92 047
 d. 920 047

32. Mr. Price’s class collects a total of 1943 pennies over a period of 4 weeks. Samantha brings 125 pennies each week. Approximately what percent of the total number of pennies collected does Samantha bring?
 a. 10%
 b. 25%
 c. 50%
 d. 75%
Consider the fractions shown below.

\[
\frac{3}{4}, \frac{18}{25}, \frac{15}{20}, \frac{75}{100}
\]

Which fractions represent equal values?

Justify your answer.
17. Consider the number line below.

\[\begin{array}{c}
12375 & x & 12435 \\
\end{array} \]

What value does \(x \) represent?

a. 12415
b. 12420
c. 12425
d. 12430

20. A company made 1,000,000 balloons last month and packaged them in bags containing 100 balloons. Each bag of balloons sells for $2.

How much money will the company receive if the company sells all of the bags?

a. $200
b. $2000
c. $20,000
d. $200,000
Consider how 30 is written below as the product of prime numbers.

\[30 = 2 \times 3 \times 5 \]

Write 168 as the product of prime numbers.
Show your work.
Germaine buys one hamburger, one sandwich and two fruit salads.

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamburger</td>
<td>$3.50</td>
</tr>
<tr>
<td>Sandwich</td>
<td>$2.75</td>
</tr>
<tr>
<td>Fruit Salad</td>
<td>$1.60</td>
</tr>
<tr>
<td>Frozen Yogourt</td>
<td>$3.00</td>
</tr>
</tbody>
</table>

How much change should she receive from $20.00?

a. $9.15
b. $9.45
c. $10.55 *
d. $12.15

Which number, when placed in the box, makes the following number sentence true?

15 – 6 × 2 + 18 ÷ 3 = □

a. 7
b. 9 *
c. 12
d. 24
Cary needs to set up 144 chairs in rows. Each row must have an equal number of chairs. Which of the following could be the method Cary uses to set up the chairs?

- a 14 rows of 10 chairs
- b 12 rows of 14 chairs
- c 6 rows of 21 chairs
- d 8 rows of 18 chairs *
The rectangular ceiling of a room has an area of 36 m². The ceiling needs 3 coats of paint. Each can of paint covers 25 m².

About how many cans of paint are needed to paint the ceiling?

Explain your thinking.

___ cans of paint are needed.
5. Four students in Ms. Haswell’s class simplify the expression below.

\[
6 + 21 \div 7 - 4 \times 2 + 5
\]

The first step of each of the four students is shown in the table below.

<table>
<thead>
<tr>
<th>Student</th>
<th>First Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoe</td>
<td>6 + 21</td>
</tr>
<tr>
<td>Liam</td>
<td>7 - 4</td>
</tr>
<tr>
<td>Dennis</td>
<td>21 \div 7</td>
</tr>
<tr>
<td>Deborah</td>
<td>2 + 5</td>
</tr>
</tbody>
</table>

Which student performs a first step that is correct?

A. Zoe
B. Liam
C. Dennis
D. Deborah
The table below shows the number of pop cans four classes collect. It also shows the number of days each class collects during the recycling program.

<table>
<thead>
<tr>
<th>Class</th>
<th>Pop Cans Collected</th>
<th>Days Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>7284</td>
<td>40</td>
</tr>
<tr>
<td>Class 2</td>
<td>1250</td>
<td>25</td>
</tr>
<tr>
<td>Class 3</td>
<td>3742</td>
<td>20</td>
</tr>
<tr>
<td>Class 4</td>
<td>2705</td>
<td>50</td>
</tr>
</tbody>
</table>

Which class collects the greatest number of pop cans per day?

F Class 1
G Class 2
H Class 3
J Class 4
31 Look at the expression below.

\[6 - 2 \times 6 \div 2 \]

Which of the following shows the order of operations that can be used to simplify this expression correctly?

a subtraction, division, multiplication
b subtraction, multiplication, division
c division, subtraction, multiplication
d multiplication, division, subtraction

32 A swim team completes the 4-person relay in 210.625 seconds. The times for the first three swimmers are shown below.

<table>
<thead>
<tr>
<th>Swimmer</th>
<th>Time (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>53.452</td>
</tr>
<tr>
<td>2</td>
<td>59.371</td>
</tr>
<tr>
<td>3</td>
<td>47.582</td>
</tr>
<tr>
<td>4</td>
<td>?</td>
</tr>
</tbody>
</table>

What is the time for swimmer 4?

a 50.220 seconds
b 50.200 seconds
c 50.022 seconds
d 50.020 seconds
2. Chandra, Brittany, Ben and Daniel buy different sandwiches and salads for lunch. Their choices are shown below.

<table>
<thead>
<tr>
<th></th>
<th>Salad</th>
<th>Sandwich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chandra</td>
<td>$4.48</td>
<td>$3.99</td>
</tr>
<tr>
<td>Brittany</td>
<td>$4.48</td>
<td>$4.99</td>
</tr>
<tr>
<td>Ben</td>
<td>$3.49</td>
<td>$4.99</td>
</tr>
<tr>
<td>Daniel</td>
<td>$3.49</td>
<td>$3.99</td>
</tr>
</tbody>
</table>

Which person should receive about $2.50 change from $10.00?
- a. Chandra
- b. Brittany
- c. Ben
- d. Daniel

31. It takes Nadeem 22 minutes to walk 1 kilometre. At this rate, approximately how long will it take Nadeem to walk 5 kilometres?
- a. 1 hour
- b. 2 hours
- c. 100 hours
- d. 110 hours

32. Which expression is equivalent to $128 \div 2$?
- a. $(120 \div 2) + (8 \div 2)$
- b. $(120 \div 2) \div (8 \div 2)$
- c. $(120 + 2) + (8 + 2)$
- d. $(120 + 2) \div (8 + 2)$
Carmen wants to install a fence. Each section of fence is 2.4 metres long and costs $6.00 per metre. Carmen will need 16 sections of fence. How much change should he receive from $250?

Show your work.
5. A number divided by 58 is close to 30.

Which of the following could be this number?

a. 18.43
b. 184.3
c. 1843
d. 18 430

23. Which operation is a correct first step to simplify the expression below?

\[44 + 10 \div 5 - 3 \times 2 + 1 \]

a. \(2 + 1\)
b. \(5 - 3\)
c. \(10 \div 5\)
d. \(44 + 10\)
Every week, Danny eats 540 grams of cereal. Over 8 weeks, he finishes a total of 12 boxes of cereal. Each box contains the same amount of cereal.

How many grams of cereal are in each box?

a 360
b 810
c 4320
d 6480
7. The table below shows the changes in the amount of snow on the ground over 10 days.

Ali estimates that the total change is an increase of 30 cm.

Nadia estimates that the total change is an increase of 25 cm.

<table>
<thead>
<tr>
<th>Day</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15 cm new snow</td>
</tr>
<tr>
<td>2</td>
<td>7.5 cm new snow</td>
</tr>
<tr>
<td>3</td>
<td>no change</td>
</tr>
<tr>
<td>4</td>
<td>4.5 cm melted</td>
</tr>
<tr>
<td>5</td>
<td>3.5 cm melted</td>
</tr>
<tr>
<td>6</td>
<td>4 cm melted</td>
</tr>
<tr>
<td>7</td>
<td>no change</td>
</tr>
<tr>
<td>8</td>
<td>12 cm new snow</td>
</tr>
<tr>
<td>9</td>
<td>2.5 cm new snow</td>
</tr>
<tr>
<td>10</td>
<td>8 cm new snow</td>
</tr>
</tbody>
</table>

Which student makes a more accurate estimate?

Circle one: Ali Nadia

Justify your answer.
33. The amounts of water in two containers are shown in the table below.

<table>
<thead>
<tr>
<th>Container</th>
<th>Amount of water (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.967</td>
</tr>
<tr>
<td>B</td>
<td>1.02</td>
</tr>
</tbody>
</table>

What is the difference between the amounts of water in the containers?

a) 0.053 L
b) 0.865 L
c) 1.947 L
d) 1.987 L

36. A number is multiplied by 0.01 to get a product of 23.6.

What is the number?

a) 0.0236
b) 0.236
c) 2360
d) 23600
Pie is served at a picnic. Each pie is made up of 6 equal pieces. Bradley records the number of pieces each person eats in the table below.

<table>
<thead>
<tr>
<th>Name</th>
<th>Gurleen</th>
<th>Max</th>
<th>Ta-Shanya</th>
<th>Stewart</th>
<th>Brianne</th>
<th>Adrian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pieces Eaten</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

How many pies are eaten in total? Express your answer as a fraction.

Show your work.

They eat _______ pies.
The results of a survey show that 30% of the people surveyed read a newspaper regularly. Which of the following numbers is equivalent to 30%?

a 0.03
b 3.0
c \(\frac{1}{3} \)
d \(\frac{3}{10} \)
	*
The weather report shows that there is an 80% chance of rain tomorrow. Which fraction represents this chance?

F $\frac{1}{2}$

G $\frac{3}{4}$

H $\frac{4}{5}$

J $\frac{5}{6}$
Some students were asked in a survey, “What is your favourite sport?” The graph below shows the results of the survey.

<table>
<thead>
<tr>
<th>Favourite Sport</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hockey</td>
<td>☑ ☑ ☑ ☑</td>
</tr>
<tr>
<td>Basketball</td>
<td>☑ ☑ ☑ ☑</td>
</tr>
<tr>
<td>Volleyball</td>
<td>☑ ☑ ☑ ☑ ☑</td>
</tr>
<tr>
<td>Soccer</td>
<td>☑ ☑ ☑ ☑</td>
</tr>
<tr>
<td>Other Sports</td>
<td>☑ ☑ ☑ ☑</td>
</tr>
</tbody>
</table>

Key

☑ represents 4 students

What percent of the students chose hockey as their favourite sport?

A 2.5%
B 10%
C 20%
D 25%
A school needs to buy 2400 pencils. The prices for pencils at 3 stores are shown below.

- Store A sells 60 pencils for $1.80.
- Store B sells 30 pencils for $0.99.
- Store C sells 15 pencils for $0.55.

The school will purchase the pencils with the lowest price. Which store has the lowest price for 2400 pencils?

Explain your answer.

Store ___________ has the lowest price for pencils.
22. A package of 3 pairs of socks costs $3.90. What is the cost of one pair of socks?

 a) $1.30
 b) $1.90
 c) $6.90
 d) $11.70

23. A teacher plants 6 tulips and 9 roses in a planter. Which of the following represents the ratio of roses to tulips?

 a) $\frac{3}{2}$
 b) $\frac{2}{3}$
 c) $\frac{15}{9}$
 d) $\frac{9}{15}$
Josie, Christina, Audrey and Manny go shopping. Josie spends \(\frac{4}{5} \) of her money, Christina spends 75\% of her money, Audrey spends 0.68 of her money and Manny spends \(\frac{17}{20} \) of his money.

Who has the largest percentage of their money left?

Justify your answer.
Natasha is 12 years old. Her teacher is 36 years old. Which ratio represents Natasha’s age in 4 years to her teacher’s age in 4 years?

a 1:3
b 2:5
c 3:10
d 4:9
31. Amir’s class has 24 students. There are 15 boys in the class. Which of the following represents the ratio of girls to boys?
 a. 24:9
 b. 9:24
 c. 5:3
 d. 3:5

34. Chris, Paul and Carla share the cost of renting a video game.
 - Chris pays 0.4 of the cost.
 - Paul pays 36% of the cost.
 - Carla pays the remainder of the cost.

 What fraction of the cost does Carla pay?
 a. $\frac{6}{25}$
 b. $\frac{9}{25}$
 c. $\frac{19}{25}$
 d. $\frac{24}{25}$
The rates for Internet use offered by three companies are shown below.

• Company A: $6.00 for every 90 minutes of use
• Company B: $2.75 for every 45 minutes of use
• Company C: $3.00 for every 60 minutes of use

Which company offers the lowest rate per minute?

Show your work.

Company _____ offers the lowest rate per minute.
A recipe for a fruit drink uses 1 litre of cranberry juice, 2 litres of grape juice and 3 litres of orange juice.

Which of the following could be represented by the ratio 3:2?

a grape juice to orange juice
b orange juice to grape juice
c grape juice to cranberry juice
d cranberry juice to grape juice